
Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 13-2083980

PENNANT: A Research Tool for Unstructured Mesh Physics on Advanced
Architectures
Charles R. Ferenbaugh,
HPC-1

Novel computer architectures such as graphics processing units (GPU), many-core chips, and
IBM BlueGene are becoming common in the high-performance computing (HPC) world. Existing
physics application codes require major modifications to perform well on these architectures. LANL
has developed the PENNANT mini-app as a research tool for finding efficient implementations of
unstructured mesh physics algorithms. It contains mesh data structures and a few physics algorithms
adapted from the LANL shock physics code FLAG and will provide insights on how to optimize FLAG
and other similar codes for future architectures.

The HPC world is entering a major transition. Novel architectures
such as GPUs, many-core chips, and IBM’s BlueGene are becoming

common in supercomputer clusters. Architectures such as these provide
high computational performance combined with low power usage, and
are likely to be used in future systems such as the “exascale” systems
being discussed in the international HPC community.

These systems will pose significant challenges to all scientific software
developers—introducing new programming models to manage the
increased hardware complexity and requiring major rewrites of existing
software. They will be particularly challenging for developers of
algorithms for general unstructured meshes—that is, computational
meshes containing arbitrary polygons (in 2D) or polyhedra (in 3D). An
example is shown in Fig. 1. These meshes have irregular connectivity
and memory usage patterns, making them more difficult to work with

than meshes with more regular structure. As a result,
unstructured mesh methods tend to lag behind other types
of physics methods in advanced architecture research.

However, since unstructured mesh codes are common at
LANL and elsewhere, it is important to find ways to run
such codes efficiently on these architectures. As a tool
for research in this area, LANL has developed a small
application, or mini-app, called PENNANT [5].

PENNANT contains approximately 2200 lines of C++
source code. It implements a small subset of the physics
of the LANL shock physics application FLAG. Like FLAG,
it operates on general unstructured meshes (meshes

containing arbitrary polygons). It currently has implementations for
serial and multi-core processors–the multi-core version uses the standard
OpenMP programming model. A GPU implementation using the CUDA
programming language is in progress, building on previous research [4].

PENNANT provides the following basic physics capabilities from FLAG:

• Lagrangian staggered grid hydrodynamics (SGH) [2] for basic
 fluid flow

• Single material, gamma-law gas equation of state

• Temporary Triangular Subzoning (TTS) [3] for subzonal pressures

• Campbell-Shashkov tensor artificial viscosity [1]

These capabilities are sufficient to run a few simple test problems in
shock physics.

The following PENNANT timing results were obtained on the Darwin
research cluster at LANL. The nodes of this cluster have 4 12-core AMD
Opteron 6168 CPUs, for a total of 48 cores, each running at 1.90 GHz.
The nodes used in this study also have NVidia M2090 GPUs attached.

Two different versions of the Noh test problem [6], nohsquare and
nohpoly, were used. A sample output from nohpoly is shown in Fig. 2.

Figure 3 shows timings from a scaling study done using the OpenMP
version with varying numbers of threads. The dashed line shows ideal
scaling of the serial version, for comparison. For both problems, the
OpenMP implementation of PENNANT scales well on up to 32 cores, but
starts to level off when using the full 48 cores of a Darwin node. The 32-
core runs showed a speedup of 22× over the serial version.

A GPU implementation is in progress. Currently the force calculation is
running on the GPU, and timings on this portion of the code show about
a 14× to 17× speedup (problem-dependent) over the corresponding
serial code. Past experience suggests that the full GPU version, when
complete, will show a similar speedup.

PENNANT demonstrates that unstructured mesh physics can be
implemented efficiently on multicore processors and GPUs. It also shows

Fig. 1. Example of an unstructured
mesh.

INFORMATION
SCIENCE AND
TECHNOLOGY

www.lanl.gov/orgs/adtsc/publications.php 81

that a small, self-contained code can capture the basic
physics algorithms and data structures of larger multi-
physics codes that use unstructured meshes.

Future development plans for PENNANT at LANL include

• additional test problems;

• additional optimizations for serial and multicore
 versions;

• multi-node version using the Message-Passing
 Interface (MPI) library to distribute work across the
 nodes in a cluster;

• GPU versions using other programming models
 (OpenCL and/or OpenACC);

• and testing on Intel Many-Integrated-Cores (MIC)
 architecture.

PENNANT will also be made available to other research
sites, hardware vendors, and compiler vendors as a research
tool to help make unstructured mesh algorithms run more
effectively on future hardware platforms and programming
models.

For more information contact Charles R. Ferenbaugh at
cferenba@lanl.gov.

[1] Campbell, J. and M.
Shashkov, J Comput Phys 172,
739 (2001).

[2] Caramana, E.J. et al., J
Comput Phys 146, 227 (1998).

[3] Caramana, E.J. and M.J.
Shashkov, J Comput Phys 142,
521 (1998).

[4] Ferenbaugh, C.R, “A
Copomparison of GPU
Strategies for Unstructured
Mesh Physics,” Concurrency
and Computation: Practice and
Experience, in press (2012).

[5] Ferenbaugh, C.R.,
“The PENNANT Mini-
App: Unstructured Mesh
Hydrodynamics for Advanced
Architectures,” Proceedings of
the Nuclear Explosives Code
Developers Conference (2012).

[6] Noh, W.F., J Comput Phys
72, 78 (1987).

Funding Acknowledgments
DOE, NNSA, Advanced Simulation and Computing Program; Office
of Science, Advanced Scientific Computing Research Program

Fig. 2. PENNANT output for
Noh problem on a mesh with
hexagonal cells.

Fig. 3. PENNANT timings
running for nohsquare and
nohpoly test problems, using up
to 48 cores.

